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Foreword 

The research w a s  carr ied out under Research Grant No, NsG-242-62, 

"Theoretical and Experimental Study of Thermal Contact Resistance 

i n  a vacuum Environment." 

It was established i n  the previous technical note (ME-TI?-242-1) 

t ha t  macroscopic e f fec ts  often dominate the thermal contact resistance 

i n  a vacuum environment. 

w a s  proposed f o r  the prediction of the thermal contact resistance, 

and extensive r e su l t s  were given which supported the conceptual 

correctness of the model. 

A res t r ic t ive  analysis based on a new model 

The present technical note gives several extensions of th i s  study. 

Section 1.0 gives a numerical solution f o r  the constriction resistance 

which removes the er ror  present i n  the approximate analyt ical  solution 

previously employed. I n  addition, the solution obtained is a lso  val id  

fo r  t h i n  regions. 

p la tes  could not be predicted even when the contact geometry w a s  

defined, 

Previouly,  the constriction resistance f o r  t h in  

Section 2.0 applies the model i n  the analysis of contacts between 

dissimilar m e t a l s .  

contacts between dissimilar metals if the influences of thermal s t r a i n  

are small. On the other hand, i f  thermal s t r a i n  is of importance, the 

model is capable of quali tative prediction of the result ing directional 

e f fec t .  

It w a s  found that the model, i s  applicable t o  
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Bome nclatime - 

a radius of a contact. area 

b radius of constriction region 

d equivalent f la tness  deviation (see Fig. 1-1) 

E modulus of e l a s t i c i t y  

f (x )  defined by Equation 1.19 
1 A” h interface conductnnce, h = - 

*aR 
k thermal c onduc t, i v i ty  

L length of spechnen 

AL 

P load 

equivalent length of contact resistance 

P contact pressure 

9 heat flux 

Q rate of heat flow 

R resistance 

R* 

T temperature 

dimemionless resistance [see Eq. 1-17) 

AT a temperature difference 

X constriction rat io ,  x = a/b 

z axia l  coordinate 

a coefficient of l l nea r  expansion 

6 grid spacing, 6 =: A r  =‘ Az 

2: e l a s t i c  conformity modulus 

w relaxation parameter 



Subscripts 

1 surface or spcimen 1 

2 surface or specimen 2 

a apparent contact area 

C constr ic t  ion 

L 

m a mean v d u e  as defined i n  text 

macroscopic constr ic t ions o r  contact regions 

s microscopic constrictions or contact areas 

t t o t a l  



1.0 The ILnfluences of the Region Geometry on the Macroscopic Constriction 

Res i s tame 

Figure 1.1 represents the model of the contact surface which was employed 

i n  the analysis of the& contact resistance i n  Reference 1. It w a s  found i n  

this reference tha t  the thermal contact resistance was dominated by the macro- 

scopic constriction resistance. Thus, l a t e r  analysis has emphasized the study 

of t h i s  resistance. 

The determination of the additional temperature drop due t o  the presence of 

a constriction consists of two par t s :  a) Given the load, what is  the macroscopic 

contact area? and b )  Given the macroscopic contact area, what is  the constriction 

resistance? Once the constriction resistance is  known, the additional tempera- 

ture drop due t o  the presence of the interface can be easi ly  calculated. The 

dfscussion and analysis which follows pertains t o  the second problem; i.e., 

finding the constriction resistance when the macroscopic contact area is  known, 
* 

For the model proposed i n  [l] , the macroscopic contact area was assumed t o  

consist. of a single c i rcular  contact area of radius y whose center coincides 

with tha t  nf the  apparent contact areae Thus, the non-contact region i s  an 

annulus whose inside and outside radii are $I and bLP respectively. 

geometry, as defined, is  symmetrical wi th  respect t o  the contact plane, the 

Since the 

cylindrical, region represented by one of the specimens can be considered. It i s  

shown i n  Figure l , 2  (page 3 ) e  Assuming t h a t  a perfect contact ex i s t s  over the 

region of radius \, the following pa r t i a l  d i f f e ren t i a l  equation and boundary 

conditions describe the temperature f i e l d :  

* 
Numbers i n  brackets, indicate references l i s t e d  i n  Appendix B. 
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YJ 
T = T(r,z) 

F P G m  102 

i3T - (r90) = 0, 
az a, c r  c b  - L  

0 c z  < L  

( l . l b )  

( L l c )  

0 c r  c b  ( l . ld )  - - L  

This problem i s  a very formidable 

one due t o  the mixed boundary condi- 

t i o n  a t  z = 0. The boundary is 

isothermal fo r  0 5 r 5 t, whereas 

there  is  zero heat flux over the  

remainder of t h e  boundary, i .e f o r  

% < r < b 

vented by Roess [83, who found t h a t  a flux d is t r ibu t ion  across the area 0 c r < 

which w a s  proportional t o  (1 - ."/%'I 
thermal area unless the constr ic t ion r a t io  

addition, Roess assumed L/b 

resis tance was independent of L/b 

assumptions he found the constr ic t ion resistance w a s :  

The d i f f i c u l t y  due t o  t h i s  mixed boundary condition w a s  circum- - Lo 

- -a, 
-112 

resulted i n  an approximately i s o -  

(= t / b L )  w a 6  near unity, I n  

w a s  suff ic ient ly  large tha t  the constr ic t ion L 

(see Figure L2)- With these addi t ional  L 

g(xL) = b - 1.40925 "r, -b 0029591 xL3 + 0.05254 %5 + 0.02105 5' 7 

+ 0,01107 5 9  + o o e o  (1.3) 
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and k is t i e  thermal conductivity. This solution w a s  employed i n  the analysis 

given i n  El]. The experimental data were then compared with the resul t ing 

theoret ical  prediction. 

Further analysis of t h i s  w a s  deemd highly desirable since: 

(i) RoessB solution f a i l e d  i f  L/bL < 1. 

the most important one, especially i n  the study of thermal contact 

This region is  probably 

resistance problems connected with space vehicles where t h i n  plates  

are often employed, 

would be present- and the  theoret ical  prediction of [la would no 

Uader such circumstances, smal l  values of L/bL 

longer be applicable , 

(ii) The theoret ical  solution of [l] which employed Roess' solution 

predicted smaller values of the constriction resistance than the 

experimental values if  % was near unity. 

could be due t o  the f a i lu re  of Roess' solution t o  apply, since h i s  

Part  of t h i s  discrepancy 

aasumed f lux  dietribution i s  i n  error  i f  x i s  near unity. L 

1.1 Solution. Procedure 

Analytical.ly, l i t t l e  success has been achieved i n  solving problems with 

mixed boundary conditdons such as the one given. This f a c t  combined with the 

limited success which Roess obtained indicated tha t  a numerical approach would 

probably be most rewarding, The only anticipated d i f f icu l ty  which the mixed 

boundary condition should cause i n  B numerical solution i s  re la t ive ly  large 

s p a t i a l  truncation e r rors  i n  the region near the point of intersect ion of the 

isothermal boundary and the zero flux boundary, z = 0, r = ye 

the der ivat ives  w i l l  be large near t h i s  point; thus, large spatid truncation 

One can see tha t  

e r rors  w i l l  resul t .  If a suf f ic ien t ly  f ine network were employed i n  order t o  

reduce these e r rors  t o  acceptable proportions, it w a s  i n i t i a l l y  thought tha t  the 

computat.ion time might be excessive. However, it w a s  possible t o  circumvent 
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t h i s  problem, 

1.1.1 The Difference Equations m l o y e d  

If one takes advantage of the symmetry of the region, a possible 

nodal network is  tha t  given i n  Figure 1.3. I n  the f i n i t e  difference representa- 

t i on  of (l-l), Ar w a s  chosen equal t o  Az. 

The subscripts "it' and "j" refer  t o  the 

z and r directions respectively, 

increases w i t h  an increase i n  the corres- 

ponding independent variable 

Each 

A f i n i t e  difference representation 

of Equation (1.1) is: 

+(1+- A r  

5 2 r  Ti,j+l + T  i-l,j i+ lJ j  
T 

FIGURE 103 

where r 

j - t h  column and Ar = & = r - r The thermal conductivity has been assumed 

t o  be constant, 

is  the radius corresponding t o  the J 

j+l j 

However, by an appropriate change i n  the dependent variable, 

the case of a l inear  var ia t ion of the conductivity w i t h  temperature could have 

been treated w i t h  negligible additional computation time and no fur ther  compli- 

cation. Equation (1.4) is  valid f o r  all nodal points except those lying on the 

I boundarfes of the region. "n" stands for  the number of rows and "m" stands f o r  

the number of columns. Since A r  w a s  chosen equal t o  Az, the r a t i o  of the length 

L t o  the radius b is  given by: L 

L n - 1  
b, m - 1  e 

- = -  
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For the nodal points on the r = 0 boundary, the simple equation 

(1.51 - 
Ti,l - Ti,2 

w a s  employed. 

If this error  is  of importance, it can be eas i ly  detected by the f a i lu re  of the 

solution t o  satisfy a heat balance, 

ence equation becomes: 

The er ror  introduced by t h i s  approximation was always negligible. 

A t  the  right insulated boundary the differ- 

Likewise, a difference equation f o r  nodal points on the lower insulated boundary 

i s  : 

Finally, a difference equation fo r  the nodal point a t  the insulated r ight  hand 

lower corner is:  

Thus: all t h e  necessary difference equations a re  known since the remainder of 

the boundary i s  at some known temperature,, Note tha t  the point r = \ , z = o  

has been conveniently placed midway between two nodal points 

The t o t a l  number of unknowns is [(n-1) m - ma], where ma is the number of 

nodal points  on the lower isothermal boundary. 

algebraic equations are  of the form: 

The resul t ing simultaneous 

- 
I n  xn '1 au. xl+ a= x2 + t a 

x1 + a22 x2 + t xn = c2 

a n l x 1 + a n 2 x 2  + t a  x = c n n n  n 
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Equations (1.9) can be rewrit ten as ; 

- a x ) - 1 
1 a - a12 "2 - a13 x3 I n  n 

x = - (cl 
ll 

... - a x ) - x2 = - ( c 2 - a  I 
21 "1 - a23 x3 2n n 22 a 

(1,lO) 

0 0 0 .  

nl x1 - x2 - - a X I  
x = - ( . , -a  1 

n a n,n-1 n-1 nn 

In  t h i s  form the  equations are amenable t o  an i t e r a t i v e  processo If the x p s  

a re  calculated i n  t h e i r  natural order, the procedure is  cal led the Gauss Seidel 

i te ra t ion .  When applied t o  e l l i p t i c  difference equations, the procedure is  also 

known as the  method - of successive displacements o r  the Liebmann Method. 

set of difference equations which w e  obtained, convergence of the  Gauss Sefdel 

For the  

i t e r a t i o n  is guaranteed since a suff ic ient  condition f o r  convergence is [2] :  

f o r  all i, and f o r  a t  l e a s t  one i: 

These conditions are  s a t i s f i e d  by the difference equations given, 

lo1.2 Methods Used t o  Decrease the Computation Time 

If Equations (1.20) are rewritten as: 

- . e .  - a x ) w 
2 a "2 - a21 x1 - a23 x3 2n n 

x ' = x2(1 - (0) + - 
22 

- anL xl - ad x2 - - a x >  
x = x n ( l  - a) + 0 ( C n  
n n,n-1 n-1 nn 

where 0 < o < 2, we have the  extrapolated Liebmann method, "d i s  cal led the  
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relaxation parameter. 

i t e r a t ive  scheme becomes the Gauss Seidel i terat ion.  

similar t o  "overrelaxation" and o < 1, %nderrelaxationn i n  solving problems by 

the relaxation technique, If w = 1, the residue a t  a nodal point is  reduced t o  

zero when a new value of the dependent variable is calculated at this point, 

If w were 2, the magnitude of the residue would not be affected; only i ts  s ign  

would change, 

If w = 1, Equations (1.U) reduce t o  (1.10) and the 

The employment of w > 1 i s  

The extrapolated Liebmann method as described was employed in obtaining 

the solution t o  the resulting set of difference equationso 

was considerably faster than the ordinary Gauss Seidel i terat ion.  

several  other techniques were employed i n  order t o  decrease the  computation time 

and spa t i a l  truncation error. 

This i t e r a t ive  scheme 

In  addition, 

These techniques follow. 

It i s  w e l l  known tha t  the number of i t e ra t ions  required t o  converge t o  the 

solution of a set of simultaneous equations (assuming the scheme i s  convergent) 

i s  highly dependent on the init ial  guess, 

a l so  increases great ly  as the number of equations i s  increased, 

a solution was first obtained w i t h  a re la t ively crude subdivision, A r  and Az 

w e r e  then Secreased by a fac tor  cf three which resulted i n  approximately nine 

times a s  many simultaneous equations as contained i n  the i n i t i a l  network, 

temperatures a t  the new additional nodal points were determined by l i nea r  in te r -  

polation, 

greater  than 27O0, %be t o t a l  number of i t e ra t ions  required w a s  usually l e s s  

than 300. 

truncation e r ror  could be rat ional ly  estimated since the unknowns w e r e  evaluated 

f o r  several  different  nodal spacings, The nodal spacing was changed by factors  

of three instead of two as a consequence of the point r = %, z = 0 (see Figure 

The time required f o r  one i t e r a t ion  

For tnese reasons, 

The 

Thus, although the number of simultaneous equations solved was often 

An extremely usefulby-product of t h i s  procedure w a s  t ha t  the spa t i a l  

1-31 0 

%* It is known tha t  the derivatives are large i n  the region of z = 0, r = 
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If a uniform network i s  employed, the number of equations required i n  order t o  

I reduce the spa t i a l  Zruncation e r ror  i n  t h i s  region t o  a negligible amou t  i s  

very barge, Since such a large number of equations would require considerable 

computation time, a nonuniform network w a s  employed. A f ine r  nodal spacing w a s  

employed only f o r  a small annular region central ly  located with respect t o  the 

point z = 0, r = y. The values of Ar and Az f o r  the f ine  network were 1/3 of 

the values employed i n  the coarse network. 

One of the major reasons fo r  this effort was t o  determine the dependence of 

the constriction resistance, RC3 on t.he length of' the region L. It is known 

tha t  as L/b becomes large, Rc i s  independent of L/hL ar?d &/az becomes a constant. L 
This l a t t e r  f a c t  w a s  employed i n  order t o  speed the computation processc A 

solution was obtained f o r  the smallest value of L desired, which w i l l  be called 

Lle and the previous r e su l t s  

were used as an i n i t i a l  guess f o r  z < L 

which was based on the t o t a l  r a t e  of heat f l o w ,  Q, was daermined and the  

i n i t i a l  guess fo r  the region w a s  then obtained by assumire that  t h i s  gradient 

The length of the region w a s  then increased t o  L 2 

For L1 c z < L2 a value of &'/az, - - 1" 

was a constalzt. The new boundasy temperature a t  2 = L i s  g~ver? by: 2 

The length I, w a 5  incremented u n t i l  Q became approximately constant; i ,e, ,  u n t i l  

R became independent of Lo The constriction resistance could be determined as 

a function of L by t h i s  procedure with a considerable savings i n  computer t h e ,  

When the i n i t i a l  approxFmation is  poor, the number of equations i s  small, A s  L 

(and h e w e  the number of equations) approaches infinity, the e r ror  i n  the i n i t i a l  

c 

approximation approaches zero, 

s e r i e s  of values of L by employing t h i s  procedure i n  approximately the same 

computation time as tha t  required i f  R were calculated fo r  only the la rges t  

value of L i n  the ser ies ,  

It was found tha t  Rc could be dezermined f o r  a 

C 



1,2 Results of Numerical Comput,ations 

Sirice it is d i f f i c u l t  fo r  the reader t o  assess the accuracy of the resulzs 

of a nm2s;tca.l. calculation i f  a bas i s  for the reported accuracy I s  not given, a 

discussion of the accuracy of the numerical results w i l l  first be given, 

Two important. sources of e r ror  can a r i se :  spa t i a l  truncation e r ror  snd 

e r ror  caused by obtaining the solution t o  a s e t  of simul%aneous equations by an 

i t e r a t ive  scheme, an i n f in i t e  mathematical process, i n  a f i n i t e  number of opera- 

t ions,  Round-off e r ror  did not cause any problems f o r  the i t e r a t ive  procedure 

employed. As a approaches zero the difference equations become illl-conditioned L 

as can be seen from physical arguments. However, the degree of i l l -condi t lomees 

w a s  never suf f ic ien t  f o r  the range of 5 employed t o  cause computational 

d i f f i cu l ty ,  (The computational time did increase as ”& became small.) 

The e r ro r  caused by truncating the i t e r a t ive  procedure after a f i n i t e  wmber 

of i t e r a t ions  w a s  assessed from an energy balance. Neglecting the e f f ec t  of 

the approximation. employed a t  the centerline of the region, the heat flowing into 

the rPgi.on will equal the heat. flawing out of the region, i n  general, only if 

the i t e r a t i v e  procedure has converged t o  the solution of the f i n i t e  difference 

equat,fsrrs-, An energy bzlance w a s  therefore employed as a convergence check, 

This check i s  excellent since the constriction resfszance i s  calculated direct ly  

from +,he heat f l c w  r s t e ,  The e r ro r  i n  the t o t a l  resistance is  the same as the 

e r r o r  i n  Qo The t.ot.zl resfstance i s  given by: 

and the constr ic t ion resistance is given by:, 

q1.3.4j L 
k T bL2 

Rc = R .  - -- 

The rate of bleat flow Q was determined frcm the average of ( Q  z=o+ Qzd 112 
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When the heat flowing through the boundary a t  z = 0 w a s  within 3.$, 0.5'$9 and 

0.25% of the heat flowing out of the boundary a t  z = L, +,he unknowns were printed, 

These resu l t s  showed tha t  the average of these two heat flow ra tes  w a s  always 

considerably more accurate than the percentage difference between them. Thus, i t  

i s  estimated tha t  the e r ro r  i n  R caused by truncating the i t e r a t ive  process w a s  

always l e s s  than (In some cases, Q was wit,hin per cen-c of the 

heat flow rate ,  Q It follows from 

(1-14) tha t  the error  i n  Re i s  largest  when Rc is  s m a l l  compared with Rto 

mimu error  which occurred f o r  5 = 0.833 w a s  only .1$. 

fo r  & = 003* 

t 

Z=O 

before the convergence t e s t  was made.) z=LJ 
Tnis 

.. 

This e r rc r  i s  0,003$1 

IJ 

It. can eas i ly  be shown that the spa t i a l  truncation e r ror  i s  of the order 

of the square of the nodal. spacing which i s  A r  = Az = 6 ,  If the fourth 

derivatives are  re la t ive ly  constant, one can assume tha t  the spa t ia l  trunca- 

t i o n  error i s  proportional t o  tj2, Thus, the t rue constriction reslstance 

becomes: 

where R * c l  is the nmerical. value obtained with a n2da.L spacing of 6 Since 1" 

two different  i n t e n d  sizes were used i n  t"he calculat.Lon scheme employed, i t  

1s a l so  kxman tha t :  

Thus, the t rue  value is  given by: 

CsXciLationa using a multiple of n o m  spse ings  indicate3 t ha t  (1,16) not only 

provided a good indication of the magnitude o f  the spatial. truncation e r ror  but 

a l so  EL means of removing pa r t  of t h i s  error,  Thus, small. corrections were 



. 

applied t o  the numerical resui ts  using Equation (1,16). 

exceeded 0,6q&, 

probably less than 1% &though f o r  some of the Limiting cases t h i s  e r ror  may 

be s l igh t ly  larger ,  

T h i s  csorrectim never 

The result>s indicate6 that  the s p a t i d  truncation error  i s  

A dimensionless constriction resistance R * w i l l  be defined as: 
C 

k hL k R  a f b 2  
- - = -  - C L  Re* = 

bL h bL bL 
(i.a.7 j 

where AL may be interpreted as the additional length of the region required t p  

produce the same resistance as the constriction. Th i s  Is the same dimensionless 

resistance as w a s  employed i n  the dimensionless plots  of [l]. The subscript "c"  

i s  employed only t o  different ia te  the constriction resistance fron! the t o t a l  

resistance,  

the subscript is often dropped. 

Since IZ is  the only resistance being considered i n  many discussions, 

The results obtained from the numerical solution are  given i n  Table 1.1, 

Tnese values are the dimensionless constriction resistance as deflned by ( l 0 X 7 )  

and are the constriction resistance of  one region only, FOP t w o  cyliridricsl  

regions of the same length and radius i n  contact over a circldar ,  concentric area 

of radius 8~~ fhe t3tal constriction resistanze or the so-called contact resistance 

is  twice the value giver, i n  Table 1,l. 

I 

__q_ 

Table 1.2 shows the variation of the r a t i o  R~*!L~bL)/Rc*(L/b,=m> with \ 
ana L/bLo 

shown 12 Zhese t8bles, 

ance is large even fo r  re la t ively th in  plateso 

th ick  and 2'' rn diameter with 3 constriction r a t i o  of 0,5. 

resis tance S s  sti l i  7l$ of the value fo r  L==. 

t h i s  value wodd be reduced to 32$, Thusp it  is seen tha t  macroscopic effects 

a l s o  w i l l  be domimat for t h in  plates, provided these e f fec ts  are  dominant f o r  

th ick  regions, 

The var ia t ion of the constriction resistance with L,/b t s  clear iy  

Fbese data show that  the macroscopic constriction r e s i s t -  

For example, consider a dlsk O,;?" 

L 

Its cons t r ic t ion  

If" i ts  thickness were 0 ~ 0 6 7 ~ ' . ~  

-- 
--- -- 

Tne dominance fo r  thick regions w a s  shown i n  ille 
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Table 1.1 The Dimensionless Constriction Resistance R 
C 

as a Function of 3 and L/bL - 

0 

, 466 
* ?03 
828 
. 889 
0 965 
0 993 
0 998 

Table 1.2 The Ratio Rc(L/bL)/Rc(L/bL = -1 
as a Function of '5, and L/bL 
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It must be remembered tha t  the boundary conditions fo r  an actuaJ. contact 

I 
between th in  regions could be different  than those given by (l . la)  t o  (1,ld).  

These results could not be direct ly  applied f o r  such cases but could be employed 

i n  a quali tative study, The definit ion of resistance as normally employed would 

probably no longer be applicable fo r  other types of boundary conditions, Thus, a 

new, meaningful description of the effects  of imperfect thermal contact a t  in te r -  

faces would have t o  be developed. 

Figure L,4  gives a comparison between the present. results and RoessD 

solution. This comparison clear ly  shows the e r ror  i n  RoessP approximate soluzfon 

which w a s  caused by the fa i lure  of h i s  assumed f l u  diEtribution t o  adequately 

approximate the isothermal boundary condition f o r  large values of 3' 
small, the agreement between the two solutions is  excellent. 

If i s  

This was expected 

since RoessT solution i s  known t o  agree with the exact. solution which 9s avai l -  

able f o r  the l imiting case of "L = 0 ,  

The data o f  Table l,h fo r  t he  case of L/bL > O e 8  was f i t t e d  with a f i f t h  

degree l e a s t  squares polynomial. The result ing equation is: 

where 

The dlsagreemene between the numerical values and Equatim ( l d 8  j w a s  always 

less thar, one per cent. The dimensionless contact r e s i s t a c e  f o r  Xwo sirnihr 

regions i n  contact is: 

&tensions of the numerical procedure given i n  t h i s  section t o  obtain 



* I 

10 

0 

I 
L/bL > 1.0 

0 0.2 0.4 0.6 

"L 
008 1.0 

Fig. 1.4 Comparison between Roess' Appr0ximat.e Solution 

and the Numerical Solution 
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solutions t o  variations of the problem described by Equations (1,l) can eas i ly  

be made and are being considered. Extensions t o  the study of the e f fec ts  of 
I 

thermal constrictions i n  t ransient  heat conduction can a l so  be eas i ly  made, One 

such problem which is  designed t o  demonstrate possible consequences of imperfect 

thermal contacts i n  t ransient  heat conduction is under consideration, 



2.0 Heat Transfer at the Interface of Dissimilar &tals--The Influences of 

I T h e m  Strain 

The dependence of the thermal contact resistance on the direct ion D f  heat 

flow a t  an interface between dissimilar metals was first reported by Barzelay, 

e t  al, [ 3 ] *  

heat flow from aluminum t o  s t e e l  was over f ive  times higher than when the heat 

flowed i n  the other direction, 

formed a more detailed experimental study of dissimilar metall ic in-terfaces, 

H i s  r e su l t s  showed tha t  the interface conductance fo r  an interface i n  air  was 

approximately 20 per cent higher when heat flowed from aluminum t o  s t e e l  than when 

it flowed i n  the other direction, The numerical difference between the values of 

interface Conductance fo r  an interface i n  wcuum remained approximately the same, 

but the percentage difference rose t o  loo$. 
e f f ec t  f o r  chromel-alumel and copper-steel interfaces. 

e f f ec t  could be associated with the mechanism of conduction a t  the "points" of 

metall ic contact, 

and bloon and Keeler [ 6 ]  applied the theory of heat conduction i n  the so l id  s t a t e  

t o  explain t h i s  asymmetric behavior, P G w e U ,  e t  ale E?], did not f ind aqy 

d i rec t iona l  e f fec t  f o r  an aluminum-steel interface or for  s e v e r d  other in te r -  

faces formed by dfsshilar me tds  which they recently tested,  

were made with a thermal comparator, 

They found that i n  some instances the interface conductance f o r  

Motivated by Barzelay's resul ts ,  Rogers [ k ]  per- 

I 

Rogers found l i t t l e  or no direct ional  

He suggested tha t  the 

W i l l i a m s  [SI at t r ibuted t h i s  phenomenon t o  surface contamination, 

Their measurements 

It is thus seen tha t  the directional e f fec t  1s a confusing phenomenon. 

Barzelay a t t r ibu ted  it t o  warping, whereas Rogers claimed that  h i s  r e su l t s  made 

Barzelay*s explanation unacceptable. 

conduction across the "actual" contact areaso A t  the same t b e ,  some data has 

shown no direct ional  e f fec t .  It is not possible t o  explain or account fo r  the 

presence of a direct ional  e f fec t  with the microscopic models presented i n  the 

l i t e r a t u r e  (see [l] f o r  a discussion of these models). 

I 

Others are s tudying the physics of lieat 

L e t  us now consider t h i s  
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prcblem employ- the macroscopic model given i n  tilo 

The formation of the microscopic contact areas is  u s 1 ~ U y  atkributed t o  

plaat.ic deformation betweer, ccntact.ing aEperitfeso This means t h a t  t.he thermal 

stresses caused by microscopic constrictions 

the mechanical stresses which were required %o cause t h i s  p l a s t i c  deformaticn; 

* 
are probably small i n  compariscn t o  

consequently, the influence of these temperature gradients on the mrcroscopic 

contact areas is   mall, On the  other hand, the  mechanical stresses and accompany- 

ing s t r a i n s  which cause the formation of the macroscopic contact areas are 

usually small, since thermal contact resistance is a major problem only i f  the 

loads between the contacting surfaces a re  small, and since the f l a tnes s  deviations 

of r e a l i s t i c  surfaces are  nat large.  It would thus appear t,hat i n  some instances 

thermal s t r a i n  would influence the size of the  macroscopic centact. area and 

consequently the macroscopic constriction resistance. 

It can be seen from the r e s u l t s  presented i n  [l] t h a t  relative s t r a ins  of 

ofly a f e w  microinches i n  a direction perpendicular t o  the plane of the ir!Terface 

could appreciably tnfluence the macroscopic contact areao !!“e reader csn e a s i l y  

verify, by considering the  smple problen of T . k  l.inear expansion of a rod, tB&t 

%her& otrsfns cf t h i s  magnitude cc i ld  have been present i n  many of tne specimens 

employed i n  obtaimng tine data reported i n  t he  Li te ra tae ,  I t  can a l so  be eas i ly  

shown that. stbrains p a r a l l e l  t o  the plane o f  the  in te r face  cause a negligible change 

i n  thz maxmsccpic constrLction. 

If f r  is  assumed that one end of rhe two :r,?ts=ting members i s  unrestrained, 

i.e., that the  1cad exerted between the contacting members f e  constant and not 

affected by the 1ongit.udinal expansion or contraction of the ccrit?acting members, 

* 
This discussion excludes the them& s t r a ins  &E t o  a change i n  the temprat lax 

l e v e l  cf the  regions, 
contacting surfaces wnich would cause a change i n  the microscopic contsct areaso 
However, these changes would occur i n  all j o i n ~ s ,  and although they add consider- 
ab le  complication t o  a microscopic deformation model, they canno-c account f o r  a 
MrectXonaL e f f e c t  

These s t r a i n s  woad cause a r e l a t ive  mosicn between the 
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thermal s t r a i n  affects the macroscopic constriction resistance only when tempera- 

trlre gradients para l le l  t o  the plane of contact. a re  present, Such gradients w i l l  

r esu l t  i f :  (P)  macroscopic constrictions t o  the heat flow across the interface 

are  present, or (ii) the thermal boundary conditions caused by the environment 

permit heat flow para l le l  t o  the plane of contact. 

w i l l  be considered separately, 

These two sources of s t r a i n  

2,1 Thermal Strain Resultdng from Macroscopic Constrictions 

Consider the ph~ysical model of the contacting members employed i n  [la; ice,> 

two cyl indrical  isotropic regions of length L and ident ica l  radius bL. The f l a t -  

ness deviation of the contacting surfaces is simulated by spherical caps o f  r ad i i  

r and r 

expansion of the lower member is zero, 

It w i l l  be fur ther  assumed momentarily tha t  the coefficienz of l inear  1 2"  

It can be seen from Figure 2,l t ha t  if heat is  flowing from the upper member 

t o  the lower member, the portion of the upper member near the macroscopic contact 

area i s  cold re la t ive  t o  the r e s t  of the member, Thus, t h i s  region contracts, 

which causes the formation of a larger  macroscopic contact area than tha t  which 

is  predimed if only the mechanical stresses a re  considered (see Fig, 2.1). Ef 

the direct ion o f  heat flcw is reversed, the portlon of t i e  upper member near %he 

mcroscopic contact is  hot relakive t o  the remainder of the memhes. I n  tlhis case, 

the thermal s t r a i n  causes a smaller macroscopic contact area than that which is  

predicted from the mechanical s t resses ,  Thus, it is seen tha t  if the heat 1s 

flowing from the upper t o  the lower member, the thermal s t r a i n  causes a decrease 

i n  the mcroscopic constriction resistance, whereas a f  it i s  flowing i n  t.he other 

direction, the thermal s t r a i n  causes an increase in the macroscopic constr ic t isn - 
resistance,  The t,hermal cont.act resist.ance thus  becomes a function of the -- 
di rec t ion  of heat flow. 

The gecmetry of the contacting members w i l l  obviously influence tne s ize  ~f 



Contact Plane--Section A-A 

e. 
specben and contact geometry for 
f i n i t e  heat flow (Tl > T 2 

specimen and contact geometry foP 
isothermil bodies (Q = 0 )  

- _ _ _  

Notes a is  tke coeff ic ient  of 
l i nea r  expansion 

a =  0 
k - l a rge  

<T I T . - 2  I 

i I 

Figure z07l Wfec+, o f  Thermab Strain R e s u l t i n g  from a Maxoscopic 

Constriction 

the  ~ O ~ " G G C O ~ ~ C  contact area and the mallIier i n  vhach +.he s i2e s f  t h i s  area varies 

with the mechanical load, 

t o  be independent of the  geometry of the contacting surfaczs, 

consider t h e  case when the heat is flowing from the  upper specimen t o  tne lower 

specmen. 

will be cold r e l a t i v e  t o  the surrounding region of the specimen, 

s t r a i n  for t h i s  ease will cause the  macroscopic contact area t o  grow whether t he  

Eowever, the trend of t he  direc%ional e f f e c t  d e  seen 

For exmpie,  

The regions near t h e  macroscopfz contact srea i n  the upper specimen 

The Thermal 



upper contacting Pinface is CGZICW~ o r  csnvex. 

e i ther  concare o r  convexe) 

(?!be lower s.uface c x d d  a l a 3  be 

ThF3 mount of thermal s t r a i n  which occurs is  a fuaac"t.ion of the coPfficlent 

of l i nea r  expansion a, the modulus of e l a s t i c i ty  E, F o i s s m 3 s  ratic v ,  a d  the 

magnitude o f  the temperatwe gradients, 

dependent. on the neat f h x  snd the thermal conductivity of the r n ~ ~ t e x . x l ,  

heat f l u  is s m a l l  and The thermal conductivity i s  .largep the influences of tnerrnal. 

st .rain vanish, 

gcw, consider a contact formed between two identical mat3riaJ.s where bark the 

Thus the influence of thermal s t r a in  is 

If  the 

upper m d  lower regfons have %he same coef f ie tem 2f Xnear expansion. Lf %ne 

material properties are  independent of temperature, the thermal strains perpen- 

dicular t o  the interface which occur i n  the regions a s  a consequence of macro- 

scopic constrictions are complementary; thus the macroscopic contact %rea is  

approximately the same 5 s  that  present i n  the absence of themail. s t ra in ,  S i n z e  

the var ia t ion of %he m a t e r i d  prcpertdes with temperature is  3?ct lsyge, the 

neglect 3T tne e f fec t  cf thermal s t r a i n  due t o  ma=rr?sc3pic e x e t r i c t x n e  S L O ~ L A  

tact cause much discrepancy between the theoreticr; p red ic t icas  r,.f [L: a rd  "$e 

experlmectai r eqx l t~ .  f c r  centw%s between k3ent i  maxerids, Desendency of 

matersal pic2ert ies  3n temperature vi11 not cause a bxecti.;.lnal e f f?c t  i n  cmtac t s  

between ident ical  materials as long as the specimen's geamtr iez  and the imposed 

boundary candit ions a re  identical .  

When dissamiSar metals are i n  contact, a 3.irect:xia'l effect  is frequently 

detectshle.  

effect  is of ten  pronowxed due mainly t o  tbe large difference i n  t k  magn-t ixk 

of the thermal c>zductivit iee,  

mens t e s t ed  w a s  a.pproxJm3.tel.y an crder of m3gnisude gscster thax t b a r  nf the 

For a combina+,ion such as stainless  steei-Lum!;num, the direct iona l  

(%e tkermal co9ductLvity sf the aiwnirrfi spec';- 

stsixless s t e e l  specmens, 1 
af each parameter is not possible, 

A+, present 8 theoret ical  prodiction of the influence 

A discussion o f  the role played by each 



variable w i l l  be delayed until the problem. i s  understood more completely, 

2.2 Thermal Strain Due t o  the Thermal. Environment 

Tae importance of s m a l l  temperature gradients p a r a l l e l  t o  the plane cf t9ir 

interface has not been real ized probably because the importance of slight, macro- 

scopic nonconformities of the mating surfaces was previously n& realized, 

However, gradients as s m a l l  as 1.OF i n  a direction p a r m e 1  t o  the plaae of  the 

interface may be of importance. These gr8,dient.s could arlse, fcr  example, f r c m  

s m a l l  amounts of radiant heat exchange with t h e  envbroment or from thermal 

shunting. (Thermal shuntfng wouid occur if an a l i g m e z t  device 31- sn iEsu1atin.g 

material were i n  contact witn the specimens,) Gradients i n  a direct ion pa ra l l e l  

t o  the  plane of the interface would be most l i k e l y  t o  occur i n  poor conductors; 

e.g., stainless s tee l ,  since a small heat flu causes a much la rger  gradient i n  

a poor conductor, Figkcre 2,2 gives an exaggerated represenht ion  of the e f f ec t  

of a small r ad ia l  gradient on a previously flat. surface for the  cyl indrical  

geometry empioyed i n  [lIc It is ssen that i n  t h i s  case the C,herm,b s t r a i n  may be 

beneficial. o r  detrimental depending on the  exiginal gefxnetry of the contac t ing  

Q 
e- 

Q 
d 

---- effecc of thermal s t r s i n  
due tc r%.dial heat flow 
on specimen geometry 

Figure 2-2  Effect of Thermal St,raSn Due t o  Thermal Environment 



i surfaces and on the sign of the radial heat flux. For tEe geometry emplcyed a n  [11, 

the e f fec t  was always detrimental since the specimens were Losing heat by radiat icn 
1 ' 
I t o  the chamber w a l l s  i n  a l l  casesc 

Tnis source of thermal s t r a i n  could also give r i s e  t o  a direct ional  effect  

i n  contacts between dissimilsr metals. For example, fo r  a s ta in less  s t ee l -  

aluminum interface,  the heat flow In  the s t s in less  specimen would cause the  

I l a rges t  gradients; thus geometry changes due t o  thermal s t r a i n  i.n t h i s  specimen 

wculd have the greatest  influence o n t n e  macroscopic contact area. Since the 

temperature l eve l  of the s ta in less  steel s p e c w n  and therefore the m@unt of 

heat it- exchanges with its environment would normaLly vary considerably wizk the 

direct.ion of heat flow, a directional e f fec t  would resul t .  The influence of 

these gradients is  presently being studied i n  greater detai l .  

de 
2 - 3  Experfmental Results 

Figure 2,5 gives a comparison of the experbenta l  resu l t s  of a s ta in less  

steel-izlaminum interface which was studied, -This interface had a t o t a l  equivdent  

flazness devfaxion of 180 pin., and the  specuens had surface rouglinesses of 

approximately 4 CL in, The dimensionless coordinates suggested I n  [.I] are  being 

employed. E and k are LOW the harmonic means based on the values f o r  duminim 

and s t a in l e s s  st.eel. I?.? theory curve which as  given i n  E i g n e  2,3 does not 

m m 

incliide the e f fec ts  of Thermal s t r a i n ,  Thus, when the heat f k v e d  from the 

StarIfLees s t e e l  t o  t he  a l m n m ,  the r e s i s t a x e  was ,owe?- thsn the predicted 

values due t o  the enlargemem of %he ~ c s o s c o p ~ c  contact area by thermal s%rain 

as discussed i n  Section 2,1, When the heat fiawed from the alwninum t o  the s ta in-  

l e s s  steel, the therm& contact resistance w a s  greater than the tLeore+,ical pre- 

dictions.  These resu l t s  indicate tha t  the thermal s t r a i n  due t c  the  macroscopic 

36 
A description of the t e s t  surfaces and a tabulation of the experhienX.al 

results i s  given i n  Appendix A, 
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constriction was domfnant, ThPs w a s  expected since the specimen surfaces were 
I 

highly polished and the heat l o s s  by radi3tion was small, 

The data given i n  Figure 2,3 were taken w i t h  a constant temperature b o p  

across the t e s t  column; thus, when the resistance of the interface changed, the 

heat flux w a s  changed, 

the heat flux f o r  t h i s  combination of d i s s imla r  metals and L t  must be considered 

i n  using these data. 

O f  course, the contact resistance i s  himy dependent on 

It is seen tha t  a single conductance or resistance versus pressure curve i s  

no longer sufficient. t o  describe a given interface between dissimalar metals evess 

i n  the absence of hysteresfs-l ike variations, If the heat f2.c.w ra te  is employed 

as a parameter, a family of curves would result .  

only t o  the macroscopic constriction and if microscopic e f f ec t s  a re  unimportant, 

the theoret lcal  curve given i n  Figure 2.3 would represent the l imit ing case of 

zero heat flux. 

If the thermal s t r a i n  i s  due 

Piguses 2.4, 2.5, and 2,6 show the variation of the contact resistance with 

heat f lux  f o r  t h i s  s ta in less  steel-aluminum interface fo r  several different. 

apparent contact pressures. During a given ser ies  3 f  t e s t s ,  the contact presswe 

w a s  held constant while ?&e heat flov ra-te was varied from some maxunum value to 

a value near zerao The direction of heat f l a w  was then reverged and the heax f l e w  

rste was a g a k  increased, 

temperature, 

The r a t e  of heat flow was changed by changing the source 

It is  seen i n  Zhese fig8ues that as the heat f l ix  qproacnes zero, me 

d i r e c t i o n d  e f f ec t  vanishes, 

r%ulting from the macroscopic constriction a.pproaches zero as  the heat f l D w  

r a t e  approaches zero, and a l s o  the small rsdia3 beat l o s s  from the specimen 

surfaces was vi r tua l ly  eliminated, lfhe heaz loss  from the specimen surfaces 

was due t o  thermal radiation. The sink temperature was fixed at apprcxunacely 

50 F; the chamber temperature w a s  approximately 75 F; and the source temperahre 

This was t c  be expected since the thermal s t r s f n  

0 0 
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varied with the r a t e  of heaT flow from approximately 100°F t o  400%, 

specimen surfaces were pellshed t o  seduce the radiation heat loss, the thermal 

s t r a i n  due t o  tce macroscopic constrfction caused the dominant directforkal effe2t. 

However, it is believed tha t  the influence of the thermal s t r a i n  due t o  %$e 

radiat ion heat losses can also be seeno For example, the change i n  the dimension- 

l e s s  resistance R+ = (ALm/bL> with the rate  of heat flow Q; f o e o p  dR*/dQ, i~ 

e i the r  posit ive or  negative depending on the direction of heat flow; however, 

d2R*/dQ2 is always positi-ae. 

Since tne 

The f ac t  that, d2R*/dQ2 is  always positiiJe is  

probably due t o  the rsdis t ion heat losses. 

f o r  %he case when heat flowed f m m  st.ainless steel t o  ahminun, dR*/dQ approached 

Figures 2.4 and ee5 etlsc show that 

zero f o r  large values of Q. Perhaps if  Q were suf f ic ien t ly  large, the thermal 

s t r a i n  due t o  heat losses would dominate, and =/dQ would be posit ive,  

The agreement between the theory of [l] and the dimensionless resistances 

of Figures 2,4, 2,5, axd 2.6 is  good if the heat f lux is  near zeroo 

the present theory can a l s o  be applied t o  dissirmlar m e t a l s ,  provided that tne 

e f fec ts  of thermal s t r a i n  are s m a l l ,  

Therefore, 

Another series of t e s t s  were made, identical  t o  those previously descriked 

except t ha t  the aJuminum specimen was replaced by a magnesium specimen. 

results are presented i n  Figures 2!.'TS 2.8, and 2!.g0 

signs of dR*/dQ and d2W/dQ2 are the same as  those experienced before the magnesium 

These 

The general t r e m k  and the 

was subst i tuted f o r  the aluminum. 

predicted rePistances and the experimental values fr,r low ra tes  of he%t flow was 

not as good as previously experienced, This w a s  probably due t o  the  creep w h i c h  

%oak place i n  the magnesium specimen; thus, the conformity of" the surfaces 

5mproved and the predicted resistances were 'too Large. 

The agreement between the theoret ical ly  

From Figures 2,L through 2,9, it can be  seen that  f o r  both interfaces st t h e  

higher rat.es of heat flow a variation i n  the contact resistance of approxamately 
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300% occurred Faith the reversal  of the direction of heat flow, 

hand, the &rect.ional e f fec t  was negligible f o r  l o w  rates of heat  f l o w ,  

On the other 

Plots of r a t e  of heat flow versus resistance were employed since theee p lo ts  

are  believed t o  be more meaningful than the temperature versus resistance cr 

conductance p lo ts  employed i n  the l i t e ra ture ,  

t h a t  the mean interface temperature varied considerably i n  these testso 

caused large variations i n  the thermal conductivity, the coefficient of l inear  

expansion, the modulus of e l a s t i c i ty ,  and other properties. m e  ef fec ts  of 

property variations with temperature i n  many instances have been removed by 

employing dmension3eas coordmates, 

Bowever, it m u s t  be remembered 

This 

It can nov be seen tha t  some of the discrepancies between experimental data 

and theory reported in [ I ]  may have been par t ia l ly  due t o  the influence of thermal 

s t ra in ,  e spec rd ly  f o r  the very f la t  surfaceso Previously, discrepancies were 

usual ly  a t t r ibu ted  t o  the neglect of mkroscopic effects .  Microscopic e f fec ts  

are  s t i l l  believed t o  be of importance i n  some inst.ances. 

The directional t ren3  which was foun6 i n  t h i s  investigation f o r  the s t a i d e a s  

steel-&mimm mterface i s  opposite t o  that found by Barzelay, e t  3;. [ 5 J .  and 

Rogers [ k j 0  

strain due t o  the thermal e,mfronment i n  the i r  experimental results in contrast 

20 that result-EDg from the macroscopic constriction which domimzed the presetat 

reslalcs. Their results are  d i f f i cu l t  t o  explain completely w?_tb.o;;lt mcre infor- 

maT.ioP 02 t hp i r  t e s t  procedue and apparatus. Powell*s 671 fa i lure  TO detect a 

d i rec t iona l  e f fec t  w a s  probably due t o  a combination of the gwmetry and the 

small r a t e  of heat flow which w a s  employed; thus, thermal s t r a i n  was xi& or' 

importance 

T ~ E  is  believed to be a consequence of the dctrninance of thermal 

A considerable mounc of work was spent on the study of the e f fec t  of" radial. 

gradients;  however, the resu l t s  were inconclusive, A b r ie f  d j l e ~ u ~ s i o n  of this 

study foUowso 



The specimens b the thermal contact resistance apparatus employed are  

unguarded (see [l] for  a complete description of the apparatus), 

radial gradients occur i n  the specimens as a consequence of r a a a t i o n  heat exchange 

with the surroundings. The r ad ia l  gradients a r e  smaU, since: 

insulation nor an alignment device i n  contact with the specimens which would 

otherwise provide a heat shunt; (ii) the specimens are  highly polished and therefore 

have low emissivity surfaces; and (iii) the vacuum environment reduces the 

convective heat exchange t o  a zlegligible amount. 

Were often present i n  the t e s t  apparatus employed by other investigators who 

reported a direct ional  e f fec t  

Thus, s d  

(i) there is no 

These sources of radial gradients 

A guard was constructed f o r  the test apparatus i n  order t o  vary the r ad ia l  

temperature gradient, 

was e lec t r i ca l ly  heated by nichrome wire windings, 

around the lower specimen and guarded only the lower specimen. 

mately isothermal; l e e , ,  no attempt was made t o  match the gradient present i n  

the specimen, 

of the interfaces.  

r a d i d  heat flow i n  e i ther  direction, 

The guard consisted of a two-inch diameter copper tube w h i m  

It w a s  concentrically located 

It was approxi- 

Ideally, the &/a, i s  approximately zero away from the disturbances 

The addition of the guard made it possible t o  obtain a s m a l l  

It was thought t na t  the sma.2. gradients which one could obtain i n  t h i s  manner 

would be suf f ic ien t  t o  establ ish c l e a r l y t h e  importance of thermal s t r a i n  resul t ing 

from the thermal environment, However, several d i f f i c u l t i e s  were encountered., The 

basic problems were: 

(i) The addition of the guard caused er ror  i n  the heat loss cal ibrat ion 

curves, Also, some heat exchange occurred between the guard and 

the source, which i n  some cases were i n  l i g h t  physical contact, 

Gurvature i n  the gradient due t o  heat exchange with the environ- and (ii) 

ment caused er rors  i n  the determination of the extrapolated surface 

temperatures and hence i n  the calculated contact resistance, 
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A new experimental apparatus, which should a l lev ia te  the above d i f f i cu l t i e s ,  

is  under construction; therefore, no attempt w a s  made t o  improve the accuracy of 

these resul ts ,  

data reduction program designed i n  the l igh t  of these extensions should circwn- 

vent the present problems, 

environment has thus been postponed u n t i l  the new f a c i l i t y  is completed, 

Modifications incorporated i n  the new f a c i l f t y  combined with a 

Further study of the influence of the thermal 
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Appendix A Tabulated Bxperimental R e s u l t s  

A , 1  Units of Tabulated Quantit ies 

P, (ps i ) ;  AT (OF); 

AL Rn = - (dimensionless) ; 
bL 

h (  Bm ); 
hr  fZQF 

A 0 2  Results of T e s t  Series 201 

96 
Flatness Deviation Surface 

Material Roughness ( i n i t i d )  ( f i n a l )  

Upper Specimen: Stainless Steel  3 p in. 14  14 
( 303 1 

Lower Specimen: Aluminum (2024) 3 cb in*  105 3* .. 

* 
Flatness deviation i s  given i n  fringes. 

After the completion of the t e s t  se r ies  with t h i s  specimen, i t  bad a 
"hole" at the center portion of i t s  surface which w a s  approxfnately 
6 p inches deep. 

One fringe i s  u e 6  microinches. 
* 
- -  

Total Equivalent Flatness Deviation (value employed i n  the cdcu la t ion  
of E )  : 180 p inches 
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Series 201.1 Object: To determine the var ia t ion of the interface eonduct- 

ance with contact pressure f o r  a contact between diseimilar 

materials. The t o t a l  temperature drop w a s  approxlmateu 

constant throughout the test ser ies .  

* 
Test No. 

1 

2 

3 
4 
5 
6 
7 
8 

- 9  
- 10 

-11 
- I 2  

- 13 
- 14 
- 1 5  
- a6 

- 17 
- 18 

Pa 

29.2 
67.7 

157 
311 
519 
760 
311 
67.7 
29.2 
67.7 

157 
3JJ 
519 
760 
987 
519 
157 
29.2 

Y 

h AT 

66.3 
148 
328 
633 

1238 

1730 
741 
160 
29.4 
57.6 

124 
220 

355 
543 
736 
356 
128 

30.5 

110.2 

62.2 
32 .l 
18.1 
10 .l 

7 .l 
15.4 
58,8 

185 
129 
77 
48 
3103 
21.2 

1 5  .8 
3009 
74.7 

181 . 9 

Q 

39.8 
50 
57.5 
62.5 
67.9 
67.2 

- 

62,4 
51.4 
29.6 
Q.6 

51.9 
57.4 
60.5 
62.6 

6000 

52.1 

30.3 

630.3 

t: x io4 

53 
122 

282 

560 
934 

1369 
560 
122 

57 
131 
30 5 
604 

1008 

1478 
1919 
1008 

305 
5? 

n 

Sign denotes the direction of heat flow. Positive sign indicates 
- heat is flowing from the upper specimen t o  the lower specimen, 
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Series  201.2 through 201.4 Object: To determine the influence of the 

r a t e  of heat flow on the contact resistance fo r  an aluminum- 

stainless steel interface. 

T e s t  No. 

28 

29 
30 
31 

- 32 
- 33 
- 34 
- 35 
- 36 

- 37 
- 38 
- 39 
- 40 
- kl 
- 42 

43 
44 
45 
46 
‘67 

AT 

41-2 

I 

30.5 

u - 9  
18.1 

22-4 

42.9 
72 00 

103 7 
104.2 

74.0 
44.5 
19.4 

9.3 
9.6 
4.9 
4,l 
7.1 

12.1 

19.8 
27.8 

Q 

58.1 

- 

41.9 
27.7 
13.7 
1307 
26.9 
36.1 
45 09 
46,i 

5207 
37.3 
19.5 
1005 

10,5 
5 04 
503 

10.0 

19.0 
39.0 
63.0 

Series 201.2 

pa = 86,9 
t: 0.016 
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Test No. 

- 59 
- 60 
- 61 
- 62 
- 63 
- 6 4  

65 
66 
67 
68 
69 
70 

71 
72 

AT 

149 
96 
37 *4 
19.3 
10.3 

10.6 

8.8 
807 

12.8 

22.0 

22.3 

42,o 
41.4 
69,0 

A - 3  Results of Test Series 202 

* 
Flat.ness Devia,cicn - Surface 

Roughness ( i n i t i d )  ( f i n d )  

Upper Specimen : Stainless Steel 
303) 

Lower Specimen: w n e s i u m  ( ~ 3 1 ~ )  

3 p in ,  14 14  

4 pin.  
__ 

=% 
Flatness deviation i s  given i n  fringes. One fringe i s  ~ 0 6  rrxLcroin2hese 

w 
Tne surface contour of the magnesium specimen was considerably altered 
from creep during the t e s t  series. The creep increased the surface 
conformity and consequently decreased the contact resistanceo 

-.. 

Total Equivalent Flatness Deviation: 
(,*This value i s  the i n i t i a l  value, 
The values of t: given are  based 
on t h i s  f la tness  deviation.) 

250 pin.  
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Series 202.1 through 2O2,3 Object: To det.ermine the influence of the rate 

of heat flow on the contact resistance f o r  a magnesium-stainless 

s t e e l  interface.  

Test No0 

- 18 
- 19 
- 20 
- 21 
- 22 
- 23 
24 
25 
26 
27 
28 
29 

31 
32 
33 
34 
35 

- 36 
- 37 
- 38 
- 39 
- 40 
- 41 

h 

104 
115 
130 
139 
129 
141 
161 
158 
186 
183 
245 
285 

5 58 

281 
247 
243 
228 

217 

- 

424 

220 

204 
190 
188 

AT 

58,6 
4303 
29.8 
17.7 
19.0 
900 
5 02 
5.3 
1-1-06 
1-1-08 

- 

2k05 
35 0 1  

lgOO 
14,8 
7.6 
4 o1 

403 
503 
5.6 
10.8 

29.1 
37.5 

2003 

R* 

3 683 
3026 

- 

2-84 
2,61 
2.82 
20 53 
2 ,lg 
2.23 
1-91 

1.48 
1.94 

1.30 
-I 

e 66> 
0 85 

126 
1.43 
1.45 
1,56 
1-65 
1.65 
1082 
1.98 
2,04 

J 

Series 202.1 

= 44.6 . pa 
t: .0083 

Series 202.2 

t: 2 0,016 



T e s t  No . 
42 
43 
44 
45 
46 
47 
48 

- 49 
- 50 
- 51 
- 52 
- 53 
- 54 

55 
56 
57 

718 9-1  35-8 0 50 
447 5 00 12.1 79 
454 409 1201 0 78 Series 202,3 

394 2,a 509 0 9 0  Pa = 157 
391 208 5 99 90 z 0,029 

375 2.9 509 0 94 
344 307 6,9 1.04 
336 398 6.9 1.06 
353 709 15,2 a903 
343 16.0 29.8 1.10 

331 9.0 16.1 1.10 

471 497 l2,2 0 75 
454 40 9 12.2 9 78 

1045 1100 62,.4 0 35 

322 23,2 4007 1.20 
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